

Limited Data, Unlimited Potential: A Study on ViTs Augmented by Masked Autoencoders

UNC Charlotte, DTU, BITS Pilani Hyderabad, IIIT Guwahati, Stony Brook University

Motivation

- Training transformers require large-scale data
- > What about small-scale data distribution? - Use pre-trained models

> What about domains with Limited data? - For example – **Medical data**

Relative classification accuracy on three datasets with different sizes: (i) Oxford Flower (2K samples), (ii) CIFAR (50K samples), and (iii) ImageNet-1K (IN-1K, 1.2M samples). Selfsupervised Auxiliary Task (SSAT) consistently outperforms others on all three datasets with two backbones. On the other hand, given the same Self-supervised Learning (SSL) method, SSL+ Fine-tuning (FT) achieves a compromised performance than SSAT, especially on the tiny Oxford Flower dataset (even worse than training from scratch).

Straightforward implementation

<u>Self-supervised Auxiliary Task</u> (SSAT)

dropped at Transformer Transformer $f(\tilde{A}(X))$ Reconstructed MSE Encoder Decoder patches L_{SSAT} Self-supervised Auxiliary Task (SSAT) shared Transformer A(X)f(A(X))Classifier cross-entrop **Class Labels** Encoder $\tilde{A}(X) = M(A(X))$ L_{cls}

Training SSAT

Inflate the input batch of images with two set of Augmentations

Two streams -> Primary + Auxiliary

• **Primary** stream – Performing classification of the image

• Auxiliary Stream – Reconstructing the input image from 25% of the input

• Total Loss = $\lambda Loss_{Primary} + (1 - \lambda) Loss_{Auxiliary}$

SSAT improves ViT performance while reducing carbon footprints

SSAT trained with outperforms on 12 Computer Vision tasks

36.49

60.6

69.64

Primary Task

55.21

80.07

91.65

CIFAR-10 | CIFAR-100

Top-1 classification accuracy (%) of different ViT variants with and without SSAT on CIFAR-10, CIFAR-100, Flowers102, and SVHN datasets. All models were trained for 100 epochs.

Method	# params. (M)	CIFAR-10	CIFAR-100	Flowers102	SVHN
ViT-T (Touvron et al., ICML 21)	5.4	79.47	55.11	45.41	92.04
+SSAT	5.8	91.65 (+12.18)	69.64 (+14.53)	57.2 (+11.79)	97.52 (+5.48)
ViT-S (Touvron et al., ICML 21)	21.4	79.93	54.08	56.17	94.45
+SSAT	21.8	94.05 (+14.12)	73.37 (+19.29)	61.15 (+4.98)	97.87 (+3.42)
CVT-13 (Wu et al., ICCV 21)	20	89.02	73.50	54.29	91.47
+SSAT	20.3	95.93 (+6.91)	75.16 (+1.66)	68.82 (+14.53)	97 (+5.53)
Swin-T (Liu et al., CVPR 21)	29	59.47	53.28	34.51	71.60
+SSAT	29.3	83.12 (+23.65)	60.68 (+7.4)	54.72 (+20.21)	85.83 (+14.23)
ResNet-50 (He et al., CVPR 16)	25.6	91.78	72.80	46.92	96.45

Does SSAT promotes overfitting? Comparison of SSAT with SSL+FT

										V. CO	
				Method	GFLOPs	CIFAR-10	CIFAR-100	IN-1K	Irain	Kg CO ₂	SSAT (SSI)
Method	IN-1K	CIFAR-100- <i>p</i>	IN-1K-v		012010	011111 10	011111 100		time	eq.	SSAI (SSL)
VITT	65.0	25.1	19.2	Scratch	1.26	79.47	55.11	65.0	60	5.96	SimCLR (Chen et al ICLR 20)
V11-1	0.00	25.1	40.5	SSL+FT	0.43 ± 1.26	85.33	60.43	70.09	55	5.46	Sincelik (chen et ul., icelik 20)
+SSAT	72.7	37.6	59.6	SSL+FT	0.43+1.26	86.48	63.28	71.1	82	8.15	DINO (Caron et al., CVPR 20)
ViT-S	74.2	22.5	62.7	SSL+FT	0.43+1.26	88.72	67.53	74.07	104	10.33	MAE (He et al., CVPR 20)
+SSAT	76.4	43.9	64.5	Ours	1.67	91.65	69.64	72.69	78	7.55	

Appropriate SSL for SSAT

Ablation for loss scaling factor

nference

Performance of SSAT based ViT on Medical and DomainNet datasets

	Method	Chaoyang	PMNIST
H	Scratch	77.37	90.22
Ξ.	IN-1K pretrained + FT	78.78	91.99
>	Scratch + SSAT	82.52	93.11
S	Scratch	80.04	91.19
ίŢ	IN-1K pretrained + FT	80.18	92.63
\geq	Scratch + SSAT	81.25	93.27

zero-shot transfer

Deepfakes Face2Face FaceSwap NeuralTextures

80.36

69.18

65.23

92.83

88.17

54.64

51.97

51.97

62.37

61.65

57.50

49.82

48.39

61.65

60.57

Method	ClipArt	Infograph	Sketc
ViT-T	29.66	11.77	18.95
+SSAT	47.95	16.37	46.22
CVT-13	60.34	19.39	56.98
+ \mathcal{L}_{drloc} (Liu et al., NeurIPS 21)	60.64	20.05	57.56
+SSAT	60.66	21.27	57.71

ViT vs. ViT+SSAT for longer training epochs

ViT vs. ViT+SSAT for different fraction of data.

SSAT for Video DeepFake Detection

Method

Scratch

Cross-efficient-vit (Coccomini et al., ICIAP 22

DFDC winner (Seferbekov, DFDC 20 winner)

VideoMAE SSL (0.95)

VideoMAE SSL (0.75)

VideoMAE (0.95) + SSAT

VideoMAE (0.75) + SSAT

Source

Manipulations

Transformer Transformer $f(\tilde{A}(X))$ Encoder Decoder elf-supervised Auxiliary Task Transformer f(A(X))Classifier Encoder $\tilde{A}(X) = M(A(X))$ dropped at inference

Figure 11. Mask Autoencoder as a Self Supervised Auxiliary Task for deepfake detection.

Deepfakes Face2Face FaceSwap

79.21

69.89

73.93

64.16

65.59

79.21

80.65

84.48

82.67

96.43

82.67

78.34

92.42

96.75

Deepfakes

Cross training evaluation and zero-shot transfer results of DeepFake detection on FaceForensics++ with SSAT.

NeuralTextures

82.08

64.87

58.57

63.44

61.65

81.36

72.76

88.57

86.28

82.67

92.42

87.73

cross-training evaluation

56.63

79.93

86.07

58.42

57.35

89.61

91.40

Method	# enc. params.	epochs	CIFAR-10	CIFAR-100
CVT-13+ \mathcal{L}_{drloc} (Liu et al., NeurIPS 21)	20M	100	90.30	74.51
CVT-13+ SSAT			95.93	75.16
ViT (scratch)			93.58	73.81
SL-ViT (Lee et al., WACV 23)	2.8M	300	94.53	76.92
ViT [†] (SSL+FT) (Gani et al., BMVC 22)			94.2	76.08
ViT + SSAT			95.1	77.8
DeiT-Ti+ $\mathcal{L}_{guidance}$ (Li et al., ECCV 22)	6M	300	-	78.15
$DeiT-Ti+\mathcal{L}_{auidance} + SSAT$			-	79.46

Face2Face

NeuralTextures

• We presented a very simple method of using SSL to train ViTs on domains with Limited data

• **SSAT** – Jointly optimize the **primary task** with SSL as an **auxiliary task**

• Effectiveness validated on **10 image classification** datasets + **2 video** datasets

• If you plan to use ViTs on a small training distribution, consider using **SSAT**!

