

Cross-modal Manifold Cutmix for Self-supervised Video Representation Learning

> Srijan Das¹ and Michael S. Ryoo² ¹UNC Charlotte ²Stony Brook University

Motivation

- Self-supervised Video representation learning require large-scale video datasets, which is impractical in limited data domains.
- Mixing strategies have not been explored exhaustively in video domain.
- How do we leverage multiple modalities in video representation learning?

Mixing based Standard Video Augmentations

from VideoMix, Yun et. al. S and T represents Spatial and temporal domain respectively.

MVA2023

Input distribution changes when mixing different modalities!

Proposed Video Augmentation for Self-supervised Video Representation Learning

 $g_{1k} = f_1.partial_forward(x1, 0, k)$

 $g_{2l} = f_2.partial_forward(x2, 0, l)$ g_{1k}^{mix} , labels_new, lam = CutMix(g_{1k} , g_{2l} , alpha)

 $z1 = normalize(f_1.partial_forward(g_{1k}^{mix}, I, N))$ $z2 = normalize(\tilde{f}_1.forward(\tilde{x1}))$ $z2, g_{2l} = z2.detach(), g_{2l}.detach() = modeline flow$

compute loss
labels = zeros(len(x1))
logits = matmul(z1, z2.T) / t # t is the temperature
loss = lam * CE(logits, labels) + (1 - lam) * CE(logits, labels_new)

Impact of different strategies in CMMC for downstream tasks like Action classification and video retrieval.

	Cross-Modal	Acti	ion cls.	Retrieval		
	Manifold Mixing	Linea	ar probe	R@1		
	strategies	UCF	HMDB	UCF	HMDB	
RGB	MoCo (Baseline)	46.8	23.1	33.1	15.2	
	+ mixup	52.8	24.4	37.6	17.6	
	+ CM mixup	53.9	25.1	40.3	17.6	
	+ CM cutmix	55.8	28.3	42.8	19.1	
OF	MoCo (Baseline)	66.8	30.3	45.2	20.8	
	+ mixup	68.6	33.1	48.7	19.5	
	+ CM mixup	70.4	33.1	51.2	21.0	
	+ CM cutmix	72.4	34.9	53.9	23.1	
stream	MoCo (Baseline)	68.1	33.1	49.8	21.9	
	+ mixup	71.3	36.3	53.8	24.5	
	+ CM mixup	72.2	35.9	56.1	25.3	
5	+ CM cutmix	74.0	38.1	58.1	27.1	

<u>CutMix</u> operation across modalities -

 $g_{1k}^{mix} = M \odot g_{1k} + (1-M) \odot g_{2l}$

intermediate representation of $modality 1 at k^{th} layer$ intermediate representation of $modality 2 at l^{th} layer$

Randomly sample a center coordinate $(M_{cc}, M_{cc}, M_{cc}, M_{cc}, M_{cc}, M_{cc})$ from $U(0, c_1), U(0, t_1), U(0, h_1)$, and $U(0, w_1)$.

Binary Mask M is obtained from -

 $M_{c1}, M_{c2} = M_{cc} - \frac{c^2}{2}, M_{cc} + \frac{c^2}{2}$ $M_{t1}, M_{t2} = M_{tc} - \frac{t^2}{2}, M_{tc} + \frac{t^2}{2}$ $M_{h1}, M_{h2} = M_{hc} - \frac{h^2}{2}, M_{hc} + \frac{h^2}{2}$ $M_{w1}, M_{w2} = M_{wc} - \frac{w^2}{2}, M_{wc} + \frac{w^2}{2}$

Mixing coefficient returned by cutmix $\rightarrow \lambda = 1 - \sum_{c,t,w,h} M_{c,t,w,h} / vol(g_{1k})$

Experiments

State-of-the-art comparison of CMMC for Nearest Neighbor video retrieval on UCF101. Testing set clips are used to retrieve training set videos and R@k is reported for $k \in \{1, 5, 10, 20\}$.

UCF101 Method Dataset R@1 R@10 R@20 R@5Jigsaw (Noroozi et al., ECCV 16) UCF 28.519.740.033.5OPN (Lee et al., ICCV 17) UCF 19.928.734.040.625.749.2RL-method (Benaim et al., CVPR 20) UCF 36.242.2VCOP (Xu et al., CVPR 19) UCF 14.151.130.340.4VCP (Luo et al., AAAI 20) UCF 18.633.653.542.5UCF 20.264.7MemDPC (Han et al., ECCV 20) 40.452.413.049.528.137.5SpeedNet (Benaim et al., CVPR 20) K400 CoCLR (Han et al., NeurIPS 20) UCF 55.982.570.876.9UCF CMMC 76.588.7 83.458.1

State-of-the-art comparison of CMMC with existing SSL based video models on

Accuracy vs #epochs graph illustrating the improvements in models trained with CMMC compared to baselines without using mixup, manifold mix, and alternate training.

State-of-the-art comparison of CMMC with 3D Poses for Action classification on NTU-60 dataset.

Mathad	11	NTU-60		
method		\mathbf{CS}	CV	
LongTGAN (Wang et al., ICCV 17)	J	39.1	48.1	
$MS^{2}L$ (Lin et al., MM 20)	J	52.6	-	
AS-CAL (Nie et al., ECCV 20)	J	58.5	64.8	
P&C (Rao et al., IS 20)	J	50.7	76.3	
SeBiReNet (Li et al., CVPR 21)	J	-	79.7	
SkeletonCLR [*] (Baseline)	J + M	70.1	77.2	
CMMC (Skeleton)	J + M	72.5	79.1	
2s-CrosSCLR (Li et al., CVPR 21)	J + M	74.5	82.1	
CMMC (2s-Skeleton)	J + M	75.2	83.1	

Action classification dataset, UCF-101 and HMDB.

	GFLOPs	\mathcal{M}	Linear Probe		Fine-tune	
Method			UCF	HMDB	UCF	HMDB
OPN (Lee et al., ICCV 17)	16	V	-	-	59.6	23.8
VCOP (Xu et al., CVPR 19)	12.5	V	-	-	72.4	30.9
CoCLR-RGB (Han et al., NeurIPS 20)	11	V	70.2	39.1	81.4	52.1
ρ BYOL [†] (Feichtenhofer et al., CVPR 21)	22	V+F	70.2	37.8	84.9	57.6
CoCLR (Han et al., NeurIPS 20)	22	V+F	72.1	40.2	87.3	58.7
CMMC	22	V+F	74.0	38.1	87.5	59.1
$\mathbf{CoCLR} + \mathbf{CMMC}$	11	V	71.3	39.4	82.5	53.2
$\mathbf{CoCLR} + \mathbf{CMMC}$	22	V+F	74.7	40.8	87.9	59.0

epochs —w/o mix —w/o CMMC —w/o alternate training —w CMMC

Conclusion

 CMMC is a video augmentation that can be enable video SSLs in Limited domains.

• CMMC can be used with any SSL.

State-of-the-art comparison of CMMC on NTU-60 using RGB (R) and Pose (P) modalities.

	Method	\mathcal{M}	Extra	Pre-train	NTU-60	
	wiethou		Data	Dataset	CS	CV
ed	I3D (Carreira and Zisserman, CVPR 17)	R	\checkmark	K400	85.5	87.
pervis	NPL (Piergiovanni and Ryoo, CVPR 21)	R	\checkmark	K400	-	93.
	STA (Das et al., ICCV 19)	R+P	\checkmark	K400	92.2	94.
Sul	VPN (Das et al., ECCV 20)	R+P	\checkmark	K400	93.5	96.
L	MoCo (S3D)	R	×	NTU-60	87.5	91.
\mathbf{v}	\mathbf{CMMC}	R	×	NTU-60	88.1	92.
\mathbf{N}	CMMC	R+P	×	NTU-60	91.4	95.

CMMC can be applied across various modalities, including RGB, Optical Flow, and Poses.

 CMMC improves performance of downstream tasks like video retrieval and action classification.